Importance of Core Revision Points: Core Revision Points are important because if you remember them strongly, many more points related to them will come out of your memory and help you to answer question and problems. Read them many times and make sure you remember them very strongly.
JEE Syllabus
Energetics:
First law of thermodynamics;
Internal energy, work and heat,
pressure-volume work;
Enthalpy,
Hess's law;
Heat of reaction, fusion and vapourization;
Second law of thermodynamics;
Entropy;
Free energy;
Criterion of spontaneity.
------------------
Sections in the Chapter - Jauhar
5.1 Some Basic Terms and Concepts
5.2 Modes of Transference of Energy between System and Surroundings
5.3 Internal Energy and Internal Energy Change
5.4 Zeroth Law of Thermodynamics
5.5 Law of Conservation of Energy: First Law of Thermodynamics
5.6 Enthalpy and Enthalpy change
5.7 Exothermic and Endothermic Reactions
5.8 Heat Capacity
5.9 Measurement of Internal Energy (Delta U) and enthalpy (Delta H) of a Reaction
5.10 Thermochemical Equations
5.11 Enthalpy Changes in Chemical Reactions
5.12 Enthalpy of Formation
5.13 enthalpy of Combustion
5.14 Enthalpy of Neutralization
5.15 Enthalpy of phase Transitions
5.16 Hess’s Law of Constant Heat Summation
5.17 Bond Enthalpy
5.18 Sources of Energy
5.19 Alternative Energy Sources
5.1 Some Basic Terms and Concepts
5.2 Modes of Transference of Energy between System and Surroundings
5.3 Internal Energy and Internal Energy Change
5.4 Zeroth Law of Thermodynamics
5.5 Law of Conservation of Energy: First Law of Thermodynamics
First law of thermodynamics;
Energy cannot be created or destroyed.
U = q + w
Internal energy of matter is equal to kinetic energy and potential energy.
The change in internal energy is equal to heat transferred and work done between the system and the surroundings.
Pressure volume work: If the pressure is constant and the matter expands, the work done is given by p * change in volume. This in termed as pressure volume work.
Enthalpy = U + pv
5.6 Enthalpy and Enthalpy change
5.7 Exothermic and Endothermic Reactions
5.8 Heat Capacity
5.9 Measurement of Internal Energy (Delta U) and enthalpy (Delta H) of a Reaction
5.10 Thermochemical Equations
5.11 Enthalpy Changes in Chemical Reactions
5.12 Enthalpy of Formation
5.13 enthalpy of Combustion
5.14 Enthalpy of Neutralization
5.15 Enthalpy of phase Transitions
5.16 Hess’s Law of Constant Heat Summation
Hess's Law
Hess's Law states that the enthalpy change for a reaction that occurs in many steps is the same as if it occurred in one step. Another way to put this is if several reactions add up to some total reaction, then their enthalpy changes will add up to the enthalpy change for the total reaction.
5.17 Bond Enthalpy
5.18 Sources of Energy
5.19 Alternative Energy Sources
First law of thermodynamics;
Energy cannot be created or destroyed.
U = q + w
Internal energy of matter is equal to kinetic energy and potential energy.
The change in internal energy is equal to heat transferred and work done between the system and the surroundings.
Pressure volume work: If the pressure is constant and the matter expands, the work done is given by p * change in volume. This in termed as pressure volume work.
Enthalpy = U + pv
Hess's Law
Hess's Law states that the enthalpy change for a reaction that occurs in many steps is the same as if it occurred in one step. Another way to put this is if several reactions add up to some total reaction, then their enthalpy changes will add up to the enthalpy change for the total reaction.
JEE Syllabus
Energetics:
First law of thermodynamics;
Internal energy, work and heat,
pressure-volume work;
Enthalpy,
Hess's law;
Heat of reaction, fusion and vapourization;
Second law of thermodynamics;
Entropy;
Free energy;
Criterion of spontaneity.
------------------
Sections in the Chapter - Jauhar
5.1 Some Basic Terms and Concepts
5.2 Modes of Transference of Energy between System and Surroundings
5.3 Internal Energy and Internal Energy Change
5.4 Zeroth Law of Thermodynamics
5.5 Law of Conservation of Energy: First Law of Thermodynamics
5.6 Enthalpy and Enthalpy change
5.7 Exothermic and Endothermic Reactions
5.8 Heat Capacity
5.9 Measurement of Internal Energy (Delta U) and enthalpy (Delta H) of a Reaction
5.10 Thermochemical Equations
5.11 Enthalpy Changes in Chemical Reactions
5.12 Enthalpy of Formation
5.13 enthalpy of Combustion
5.14 Enthalpy of Neutralization
5.15 Enthalpy of phase Transitions
5.16 Hess’s Law of Constant Heat Summation
5.17 Bond Enthalpy
5.18 Sources of Energy
5.19 Alternative Energy Sources
5.1 Some Basic Terms and Concepts
5.2 Modes of Transference of Energy between System and Surroundings
5.3 Internal Energy and Internal Energy Change
5.4 Zeroth Law of Thermodynamics
5.5 Law of Conservation of Energy: First Law of Thermodynamics
First law of thermodynamics;
Energy cannot be created or destroyed.
U = q + w
Internal energy of matter is equal to kinetic energy and potential energy.
The change in internal energy is equal to heat transferred and work done between the system and the surroundings.
Pressure volume work: If the pressure is constant and the matter expands, the work done is given by p * change in volume. This in termed as pressure volume work.
Enthalpy = U + pv
5.6 Enthalpy and Enthalpy change
5.7 Exothermic and Endothermic Reactions
5.8 Heat Capacity
5.9 Measurement of Internal Energy (Delta U) and enthalpy (Delta H) of a Reaction
5.10 Thermochemical Equations
5.11 Enthalpy Changes in Chemical Reactions
5.12 Enthalpy of Formation
5.13 enthalpy of Combustion
5.14 Enthalpy of Neutralization
5.15 Enthalpy of phase Transitions
5.16 Hess’s Law of Constant Heat Summation
Hess's Law
Hess's Law states that the enthalpy change for a reaction that occurs in many steps is the same as if it occurred in one step. Another way to put this is if several reactions add up to some total reaction, then their enthalpy changes will add up to the enthalpy change for the total reaction.
5.17 Bond Enthalpy
5.18 Sources of Energy
5.19 Alternative Energy Sources
First law of thermodynamics;
Energy cannot be created or destroyed.
U = q + w
Internal energy of matter is equal to kinetic energy and potential energy.
The change in internal energy is equal to heat transferred and work done between the system and the surroundings.
Pressure volume work: If the pressure is constant and the matter expands, the work done is given by p * change in volume. This in termed as pressure volume work.
Enthalpy = U + pv
Hess's Law
Hess's Law states that the enthalpy change for a reaction that occurs in many steps is the same as if it occurred in one step. Another way to put this is if several reactions add up to some total reaction, then their enthalpy changes will add up to the enthalpy change for the total reaction.
No comments:
Post a Comment